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Figure 1:

1 Spin Angular Momentum and Cylindrical Vec-
tor Beam

In this section, we will study the spin angular momentum of a circularly polar-
ized wave. It is to be noted that in cylindrical coordinates, as shown in Figure
1, x̂ = ρ̂ cosφ− φ̂ sinφ, ŷ = ρ̂ sinφ+ φ̂ cosφ, then

(x̂± jŷ) = ρ̂e±jφ ± jφ̂e±jφ = e±jφ(ρ̂± φ̂) (1.1)

Therefore, the ρ̂ and φ̂ of a CP is also an azimuthal traveling wave in the φ̂
direction in addition to being a traveling wave e−jβz in the ẑ direction. This
can be obviated by writing

e−jφ = e−jkφρφ (1.2)

where kφ = 1/ρ is the azimuthal wave number, and ρφ is the arc length traversed
by the azimuthal wave.

Thus, the wave possesses angular momentum called the spin angular momen-
tum (SAM), just as a traveling wave e−jβz possesses linear angular momentum
in the ẑ direction.

In optics research, the generation of cylindrical vector beam is in vogue.
Figure 2 shows a method to generate such a beam. A CP light passes through
a radial analyzer that will only allow the radial component of (1.1) to be trans-
mitted. Then a spiral phase element (SPE) compensates for the exp(±jφ) phase
shift in the azimuthal direction. Finally, the light is a cylindrical vector beam
which is radially polarized without spin angular momentum. Such a beam has
been found to have nice focussing property, and hence, has aroused researchers
in the optics community.
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Figure 2: Courtesy of Zhan, Q. (2009). Cylindrical vector beams: from mathe-
matical concepts to applications.Advances in Optics and Photonics,1(1), 1-57.

2 Complex Poynting’s Theorem and Lossless Con-
ditions

2.1 Complex Poynting’s Theorem

It has been previously shown that the vector E(r, t) ×H(r, t) has a dimension
of watts/m2 which is that of power density. Therefore, it is associated with
the direction of power flow. As has been shown for time-harmonic field, a time
average of this vector can be defined as

〈E(r, t)×H(r, t)〉 = lim
T→∞

1

T

T̂

0

E(r, t)×H(r, t) dt. (2.1)

Given the phasors of time harmonic fields E(r, t) and H(r, t), namely, E(r, ω)
and H(r, ω) respectively, we can show that

〈E(r, t)×H(r, t)〉 =
1

2
<e{E(r, ω)×H∗(r, ω)}. (2.2)

Here, the vector E(r, ω) ×H∗(r, ω), as previously discussed, is also known as
the complex Poynting vector. Moreover, because of its aforementioned property,
and its dimension of power density, we will study its conservative property. To
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do so, we take its divergence and use the appropriate vector identity to obtain2

∇ · (E×H∗) = H∗ · ∇ ×E−E · ∇ ×H∗. (2.3)

Next, using Maxwell’s equations for ∇×E and ∇×H∗, namely

∇×E = −jωB (2.4)

∇×H∗ = −jωD∗ + J∗ (2.5)

and the constitutive relations for anisotropic media that

B = µ ·H, D∗ = ε∗ ·E∗ (2.6)

we have

∇ · (E×H∗) = −jωH∗ ·B + jωE ·D∗ −E · J∗ (2.7)

= −jωH∗ · µ ·H + jωE · ε∗ ·E∗ −E · J∗. (2.8)

The above is also known as the complex Poynting’s theorem. It can also be
written in an integral form using Gauss’ divergence theorem, namely,
ˆ
S

dS · (E×H∗) = −jω
ˆ

V

dV (H∗ · µ ·H−E · ε∗ ·E∗)−
ˆ

V

dVE · J∗.

(2.9)

where S is the surface bounding the volume V .

2.2 Lossless Conditions

For a region V that is lossless and source-free, J = 0. There should be no net
time-averaged power-flow out of or into this region V . Therefore,

<e
ˆ

S

dS · (E×H∗) = 0, (2.10)

Because of energy conservation, the real part of the right-hand side of (2.8),
without the E · J∗ term, must be zero. In other words, the right-hand side of
(2.8) should be purely imaginary. Thus

ˆ

V

dV (H∗ · µ ·H−E · ε∗ ·E∗) (2.11)

must be a real quantity.
Other than the possibility that the above is zero, the general requirement for

(2.11) to be real for arbitrary E and H, is that H∗ ·µ ·H and E ·ε∗ ·E∗ are real

2We will drop the argument r, ω for the phasors in our discussion next as they will be
implied.
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quantities. Notice that they are also scalar numbers. But since the conjugate
transpose of a real scalar number is itself, we have (H∗ · µ ·H)† = H∗ · µ ·H
where † implies conjugate transpose. The above, in detail, using the rule of

matrix algebra that (A ·B ·C)t = C
t ·Bt ·At

, implies that3

(H∗ · µ ·H)† = (H · µ∗ ·H∗)t = H∗ · µ† ·H = H∗ · µ ·H. (2.12)

The last equality in the above is possible only if µ = µ† or that µ is hermitian.
Therefore, the conditions for anisotropic media to be lossless are

µ = µ†, ε = ε†, (2.13)

requiring the permittivity and permeability tensors to be hermitian. If this is
the case, (2.11) is always real for arbitraty E and H, and (2.10) is true, implying
a lossless region V . Notice that for an isotropic medium, this lossless conditions
reduce simply to that =m(µ) = 0 and =m(ε) = 0, or that µ and ε are pure real
quantities. Hence, many of the effective permittivities or dielectric constants
that we have derived using the Drude-Lorentz-Sommerfeld model cannot be
lossless when the friction term is involved.

If a medium is source-free, but lossy, then <e
´
dS · (E×H∗) < 0. In other

words, time-average power must flow inward to the volume V . Consequently,
from (2.9) without the source term J, this implies

=m
ˆ

V

dV (H∗ · µ ·H−E · ε∗ ·E∗) < 0. (2.14)

But the above, using that =m(Z) = 1/(2j)(Z − Z∗), is the same as

−j
ˆ

V

dV [H∗ · (µ† − µ) ·H + E∗ · (ε† − ε) ·E] > 0. (2.15)

Therefore, for a medium to be lossy, −j(µ† − µ) and −j(ε† − ε) must be her-
mitian, positive definite matrices, to ensure the inequality in (2.15). Similarly,
for an active medium, −j(µ† −µ) and −j(ε† − ε) must be hermitian, negative
definite matrices.

For a lossy medium which is conductive, we may define J = σ · E where σ
is a conductivity tensor. In this case, equation (2.9), after combining the last
two terms, may be written as

ˆ

S

dS · (E×H∗) = −jω
ˆ

V

dV

[
H∗ · µ ·H−E ·

(
ε∗ +

jσ∗

ω

)
·E∗

]
(2.16)

= −jω
ˆ
dV [H∗ · µ ·H−E · ε̃∗ ·E∗], (2.17)

3In physics notation, the transpose of a vector is implied in a dot product.
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where ε̃ = ε − jσ
ω which is the complex permittivity tensor. In this manner,

(2.17) has the same structure as the source-free Poynting’s theorem. Notice here
that the complex permittivity tensor ε̃ is clearly non-hermitian corresponding
to a lossy medium.

For a lossless medium without the source term, by taking the imaginary part
of (2.9), we arrive at

=m
ˆ

S

dS · (E×H∗) = −ω
ˆ

V

dV (H∗ · µ ·H−E · ε∗ ·E∗), (2.18)

The left-hand side of the above is the reactive power coming out of the volume
V , and hence, the right-hand side can be interpreted as reactive power as well.
It is to be noted that H∗ · µ · H and E · ε∗ · E∗ are not to be interpreted as
stored energy density when the medium is dispersive. The correct expressions
for stored energy density will be derived in the next section.

But, the quantity H∗·µ·H for lossless, dispersionless media is associated with
the time-averaged energy density stored in the magnetic field, while the quantity
E · ε∗ ·E∗ for lossless dispersionless media is associated with the time-averaged
energy density stored in the electric field. Then, for lossless, dispersionless,
source-free media, then the right-hand side of the above can be interpreted as
stored energy density. Hence, the reactive power is proportional to the time rate
of change of the difference of the time-averaged energy stored in the magnetic
field and the electric field.

3 Energy Density in Dispersive Media4

A dispersive medium alters our concept of what energy density is. To this end,
we assume that the field has complex ω dependence in ejωt, where ω = ω′−jω′′,
rather than real ω dependence. We take the divergence of the complex power
for fields with such time dependence, and let ejωt be attached to the field. So
E(t) and H(t) are complex field but not exactly like phasors since they are not
truly time harmonic. Hence,

∇ · [E(t)×H∗(t)] = H∗(t) · ∇ ×E(t)−E(t) · ∇ ×H∗(t)

= −H∗(t) · jωµH(t) + E(t) · jω∗ε∗E∗ (3.1)

where Maxwell’s equations have been used to substitute for ∇×E(t) and ∇×
H∗(t). The space dependence of the field is implied, and we assure a source-free
medium so that J = 0.

If E(t) ∼ ejωt, then, due to ω being complex, now H∗(t) ∼ e−jω
∗t, and the

term like

E(t)×H∗(t) ∼ ej(ω−ω
∗)t = e2ω

′′t (3.2)

4The derivation here is inspired by H.A. Haus, Electromagnetic Noise and Quantum Optical
Measurements. Generalization to anisotropic media is given by W.C. Chew, Lectures on
Theory of Microwave and Optical Waveguides.
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And each of the term above will have similar time dependence. Writing (3.1)
more explicitly, by letting ω = ω′ − jω′′, we have

∇ · [E(t)×H∗(t)] = −j(ω′ − jω′′)µ(ω)|H(t)|2 + j(ω′ + jω′′)ε∗(ω)|E(t)|2
(3.3)

Assuming that ω′′ � ω′, or that the field is quasi-time-harmonic, we can let,
after using Taylor series approximation, that

µ(ω′ − jω′′) ∼= µ(ω′)− jω′′ ∂µ(ω′)

∂ω′
, ε(ω′ − jω′′) ∼= ε(ω′)− jω′′ ∂ε(ω

′)

∂ω′
(3.4)

Using (3.4) in (3.3), and collecting terms of the same order gives

∇ · [E(t)×H∗(t)] =− jω′µ(ω′)|H(t)|2 + jω′ε∗(ω′)|E(t)|2

− ω′′µ(ω′)|H(t)|2 − ω′ω′′ ∂µ
∂ω′
|H(t)|2

− ω′′ε∗(ω′)|E(t)|2 − ω′ω′′ ∂ε
∗

∂ω′
|E(t)|2 (3.5)

The above can be rewritten as

∇ · [E(t)×H∗(t)] = −jω′
[
µ(ω′)|H(t)|2 − ε∗(ω′)|E(t)|2

]
− ω′′

[
∂ω′µ(ω′)

∂ω′
|H(t)|2 +

∂ω′ε∗(ω′)

∂ω′
|E(t)|2

]
(3.6)

For a lossless medium, ε(ω′) is purely real, and the first term of the right-hand
side is purely imaginary while the second term is purely real. In the limit when
ω′′ → 0, when we take half the imaginary part of the above equation, we have

∇ · 1

2
=m [E×H∗] = −ω′

[
1

2
µ|H|2 − 1

2
ε|E|2

]
(3.7)

which has the physical interpretation of reactive power as has been previously
discussed. When we take half the real part of (3.6), we obtain

∇ · 1

2
<e[E×H∗] = −ω

′′

2

[
∂ω′µ

∂ω′
|H|2 +

∂ω′ε

∂ω′
|E|2

]
(3.8)

Since the right-hand side has time dependence of e2ω
′′t, it can be written as

∇ · 1

2
<e[E×H∗] = − ∂

∂t

1

4

[
∂ω′µ

∂ω′
|H|2 +

∂ω′ε

∂ω′
|E|2

]
= − ∂

∂t
〈WT 〉 (3.9)

Therefore, the time-average stored energy density can be identified as

〈WT 〉 =
1

4

[
∂ω′µ

∂ω′
|H|2 +

∂ω′ε

∂ω′
|E|2

]
(3.10)

7



ECE 604, Lecture 10 Fri, Feb 1, 2019

For a non-dispersive medium, the above reduces to

〈WT 〉 =
1

4

[
µ|H|2 + ε|E|2

]
(3.11)

which is what we have derived before. In the above analysis, we have used a
quasi-time-harmonic signal with exp(jωt) dependence. In the limit when ω′′ →
0, this signal reverts back to a time-harmonic signal, and our interpretation
of complex power. However, by assuming the frequency ω to have a small
imaginary part ω′′, it forces the stored energy to grow very slightly, and hence,
power has to be supplied to maintain the growth of this stored energy. By so
doing, it allows us to identify the expression for energy density for a dispersive
medium.
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